

Technology-Driven Approaches to Sustainable Farming

Transitioning from Chemical to Natural Fertilizers

1. Introduction

Agriculture remains the backbone of the Indian economy, providing livelihood to nearly half of the population. Despite its critical role, farmers often face socioeconomic vulnerabilities such as crop failure, debt, price volatility, and lack of access to healthcare and social protection. Farming is inherently risky: crop failure, pests, weather variability, market price fluctuations, lack of infrastructure, and limited access to credit all pose threats to farmers' livelihoods. Social security for farmers aims to provide protection against such risks through financial instruments (insurance, pensions), subsidies, direct benefits, and safety nets.

Modern agriculture has long relied on chemical fertilizers such as urea, DAP (Diammonium Phosphate), and potash to enhance crop productivity. While these have played a vital role in achieving food security, excessive and indiscriminate use has led to soil degradation, groundwater contamination, and ecological imbalance. In recent years, the global movement toward sustainable and eco-friendly agriculture has emphasized the need for chemical-free fertilizers, which maintain soil health, enhance biodiversity, and ensure long-term productivity without harming the environment. The chapter focuses specifically how chemical based fertilizers become hazardous and challenge to general public health. The chapter also make an attempt to understand the roles of information technology by providing technology based natural fertilizers rather than chemical based fertilizers.

2. Overview of India's Fertilizer Industry

The Indian fertilizer industry, valued at ₹982 billion in 2024, is set to grow with rising demand, government support, and a shift toward sustainable practices. Fertilizers represent one of the eight core industries of the country. India has one of the world's largest fertilizer consumption markets, driven by its massive agricultural sector that supports over half the population. In the fiscal year 2020, nitrogenous fertilizer consumption in India amounted to over 19 million metric tons. Among nitrogen fertilizers, urea has become disproportionately dominant in Indian agriculture. In the country, urea is the most produced, imported, consumed and physically regulated fertiliser of all. Urea consumption rose by over a third since 2009-10; this has been largely due to its Maximum Retail Price (MRP) going up by a

mere 16.5% – from Rs 4,830 to Rs 5,628 per tonne. Despite the introduction of various measures to reduce consumption, urea sales crossed a record 35.7 million tons. Urea's farm gate price has been fixed at Rs 5,360/tonne since 2012, leading to excessive consumption.

3. The Rise and Consequences of Chemical Fertilizers

3.1 The Green Revolution: Promise and Price

The Green Revolution began in 1943 through collaboration between the Rockefeller Foundation and the Mexican government, aimed at addressing food production challenges through agricultural innovation. By the 1960s, this transformation had spread globally, introducing high-yield crop varieties of rice and wheat that fundamentally changed agriculture in developing nations, particularly in India and other parts of Asia.

Norman Borlaug credited as the father of the Green Revolution, pioneered plant breeding techniques that, combined with irrigation, chemical fertilizers, and herbicides, increased crop yields dramatically and reduced hunger worldwide. The results were impressive: wheat and rice production doubled in many regions, and millions were lifted from the threat of famine. However, this agricultural transformation came with a hidden cost. Traditional agriculture had recycled nutrients by returning manure to fields, maintaining a natural balance. The Green Revolution disrupted this cycle, replacing organic practices with manufactured inputs like superphosphate made from mined phosphate rock.

3.2 Imbalanced Fertilization

The Indian government has implemented several measures to promote balanced fertilisation. Despite these efforts, the consumption of urea has risen, leading to imbalanced fertilisation. In India, farmers often rely too heavily on nitrogen-based fertilizers like urea, while neglecting the use of phosphates and potash. This imbalance leads to the depletion of crucial soil nutrients, which over time reduces crop yields.

The ideal NPK (Nitrogen-Phosphorus-Potassium) ratio recommended by the Fertiliser Association of India (FAI) is 4:2:1. However, improved fertilizer use enhanced the NPK ratio in Indian soils to 9.8:3.7:1 in kharif 2024 from 10.9:4.9:1 in kharif 2023, though still far below the ideal 4:2:1 ratio. This indicates a severe nitrogen overuse and relative deficiency of phosphorus and potassium.

3.3 Water Pollution and Eutrophication

When excess nutrients from fertilizers enter water bodies through runoff and soil erosion, they trigger a cascade of environmental problems. Algae blooms deplete oxygen in surface waters, threatening aquatic life. Pathogens and nitrates contaminate drinking water supplies, while excess nitrogen contributes to increased ground-level ozone formation and higher amounts of climate-changing greenhouse gases when not fully utilized by plants.

3.4 Soil Health Degradation

The excessive and imbalanced use of chemical fertilizers, particularly urea, has severely degraded soil health across India:

- i. **Nutrient Imbalances:** Continuous nitrogen overuse depletes secondary and micronutrients from soil
- ii. **Soil Acidification:** Heavy nitrogen application lowers soil pH
- iii. **Reduced Organic Matter:** Over-reliance on chemical inputs reduces farmers' use of organic amendments
- iv. **Microbial Disruption:** Excessive chemical fertilization harms beneficial soil microorganisms
- v. **Soil Structure Deterioration:** Loss of organic matter and biological activity degrades soil physical properties

3.5 Declining Crop Response

The imbalanced fertilization has led to diminishing returns:

- I. Crops become less responsive to nitrogen inputs alone
- II. Micronutrient deficiencies appear even with high NPK use
- III. Pest and disease problems increase with imbalanced nutrition
- IV. Overall productivity gains plateau or decline despite increasing inputs

3.6 Water Pollution

India faces severe water pollution from agricultural fertilizer runoff: The Nitrate contamination of groundwater in Punjab, Haryana, and other intensively farmed regions. It gives birth to fatal diseases. Eutrophication of lakes and rivers, contamination of drinking water sources and decline in aquatic biodiversity are the other dark side of adopting chemical based farming.

4. Social and Cultural Factors

4.1 Traditional Knowledge

India has rich traditional knowledge of organic farming, and the farmers are well equipped with the knowledge of natural farming. Still, the use of fertilizers and other chemical is high. And it is because of infrastructural setup which is either negligible or ignored. If Government agencies could take charge of implementing and motivating to use following technology based practices, picture can be better:-

- Composting techniques
- Green manuring practices
- Crop rotation systems
- Mixed cropping patterns
- Natural pest management

Reviving and integrating this knowledge with modern science offers promising pathways forward.

4.2 Farmer Education

Changing deeply entrenched practices requires on field demonstration plots showing alternative methods. Forming Farmer-to-farmer learning networks will create willingness readiness and acceptance of using chemical free fertilizers

- Extension services focused on soil health through social gathering
- Economic incentives by government for adopting sustainable practices
- Technical Support during transition periods

5 Government Initiatives and Innovations

5.1 Nano Urea

In June 2021, the Indian Farmers' Fertiliser Cooperative (IFFCO) launched a liquid fertiliser called 'Nano Urea'. This nanotechnology-based product aims to provide nitrogen more efficiently, potentially reducing the quantity needed per hectare.

In 2024, the introduction continued with Nano Diammonium Phosphate (DAP), expanding the nano-fertilizer portfolio. These innovations promise:

- Reduced fertilizer consumption
- Lower environmental impact

- Improved nutrient use efficiency
- Cost savings for farmers

5.2 Nutrient-Based Subsidy Policy

For phosphatic and potassic (P&K) fertilizers, the government implemented the Nutrient Based Subsidy (NBS) Policy in 2010. Under this system, subsidies are based on nutrient content rather than product type, aiming to encourage balanced fertilization. However, urea remains outside this system, continuing to receive disproportionate subsidization, which perpetuates imbalanced use.

5.3 Soil Health Card Scheme

The government has promoted soil testing through the Soil Health Card scheme, providing farmers with information about their soil's nutrient status and recommendations for balanced fertilization. However, adoption and compliance remain challenges.

5.4 Neem-Coated Urea

To reduce misuse and improve efficiency, the government mandated neem coating for urea. This slows nitrogen release, improving plant uptake and reducing losses to the environment.

5.5 Technology Adoption

- Nano-Fertilizers:** Scale up production and adoption
- Slow-Release Formulations:** Improve nutrient use efficiency
- Biofertilizers:** Expand production and distribution
- Digital Tools:** Mobile apps for nutrient recommendations
- Precision Equipment:** GPS-guided variable rate application
- Chemical Free Fertilizer-** Natural resources of manure and tech-based use.

5.6 Paramparagat Krishi Vikas Yojana (PKVY)

Launched in 2015 under the National Mission for Sustainable Agriculture, PKVY promotes **cluster-based organic farming**. Farmers are encouraged to adopt chemical-free practices and are provided financial assistance for certification, training, and marketing.

5.7 National Mission on Sustainable Agriculture (NMSA)

It aims to promote climate-resilient agricultural practices, integrated nutrient management, and efficient resource use.

5.8 Gobardhan (Galvanizing Organic Bio-Agro Resources Dhan)

Under this the farmers are encouraged to the use cattle dung, agricultural residue, and organic waste for producing bio-fertilizers and bio-gas, supporting circular economy in rural areas. India's chemical fertilizer use, particularly the overwhelming dominance of urea, represents both an agricultural success story and a cautionary tale. While fertilizers contributed to the Green Revolution and helped feed a growing population, the current pattern of excessive and imbalanced use threatens long-term agricultural sustainability. However, promising solutions are emerging: nano-fertilizers, bio-fertilizers, better soil testing, integrated nutrient management, and growing awareness chemical free farming. The path forward requires to promote chemical free fertilizer along with traditional ways of manure production with waste and dung of animals.

6. Chemical-Free Fertilizers

In order to meet the growing need for food, agricultural land per unit area required to achieve maximum produce in terms of quality and quantity. The nutrition of the plant is the one of the major element to control agricultural yields and quality. Presence of nutrients in the soil has direct impact on the quality and quantity of yield. In the permanent agricultural land, the soil fertility is at stake. Therefore, farmers use various ways and means to maintain the quality of the soil. They use manure-green manure or animal manure, fertilize the soil, combat pests, and different methods of irrigation. They also adopt various process of agricultural activities to make more efficient to soil. Fertilization is all time priority for farmers. But mindless use of fertilizers causes problems. It kills the soil fertility and comes as threat to human.

Excessive fertilization reduces soil salinity, it comes with heavy metal accumulation, water eutrophication and accumulation of nitrate, and nitrogen & sulfur lead to environmental problems such as the greenhouse effect. The nitrogenous fertilizers has not only deteriorated the soil fertility but has also effect the health of human beings and animals adversely. The indiscriminative and excessive use of pesticides produced health hazards for life and for soil macro/micro flora and fauna. Chemical-free or organic fertilizers represent a return to nature-based nutrient cycling, enhanced by modern scientific understanding. Unlike their synthetic

counterparts that provide quick nutrient bursts, organic fertilizers work in harmony with soil biology to build long-term fertility and ecosystem health.

6.1 Types of Chemical-Free Fertilizers

6.1.1 Compost

Traditional composting remains one of the most accessible and effective organic fertilization methods. By decomposing organic waste materials—from kitchen scraps to yard trimmings—farmers and gardeners create nutrient-rich soil amendments that improve soil structure, water retention, and microbial diversity. Composting also addresses waste management, transforming materials that would otherwise occupy landfills into valuable agricultural inputs.

6.1.2 Vermi-compost

Vermicompost takes composting to a higher level through the biological action of earthworms—typically red wiggler and other species—that process vegetable waste, food scraps, and bedding materials. The result is a remarkably rich fertilizer containing essential nutrients like nitrogen, phosphorus, and potassium, along with beneficial microbes that enrich soil life. What sets vermicompost apart is its content of humic substances, including fulvic acid and humic acid. These compounds facilitate chemical reactions in the soil, enhance microbial activity, and suppress pathogenic organisms. The earthworm castings improve soil texture, creating a crumbly structure that holds moisture while allowing proper drainage and root penetration.

6.1.3 Bio-fertilizers

Biofertilizers harness the power of beneficial microorganisms to enhance plant nutrition. With a history stretching back decades, organisms like Rhizobium (used for leguminous crops) and Azotobacter (effective for wheat, maize, mustard, cotton, and potato) have proven their value in sustainable agriculture. Blue-green algae also serve important roles in certain cropping systems. These microscopic allies help plants absorb nutrients more efficiently, fix atmospheric nitrogen, solubilize phosphorus, and produce growth-promoting substances. Some biofertilizers can be derived from vermicompost, while others are cultured separately under controlled conditions.

6.1.4 Animal Manures

Fresh animal manure from cattle, swine, and poultry remains a cornerstone of organic fertilization. Rich in nitrogen and other essential nutrients, different types of manure offer varying nutrient profiles suited to different crops and soil conditions. Proper application methods, considering moisture content and decomposition stage, maximize benefits while minimizing potential drawbacks like nutrient runoff or pathogen concerns.

6.1.5 Agricultural By-Products

Modern sustainable agriculture increasingly recognizes the value of agricultural waste streams. Materials like alfalfa meal, rice bran, cottonseed meal, and bone meal provide concentrated nutrients while reducing waste. This circular approach transforms what were once disposal problems into valuable agricultural inputs.

7. Benefits of Chemical-Free Fertilizers

7.1 Soil Health and Fertility

The most profound benefit of organic fertilizers lies in their ability to build genuine, lasting soil health rather than merely providing temporary nutrient boosts. These natural amendments improve soil structure, creating the porous, water-retentive environment that roots need to thrive. They increase populations of beneficial microorganisms—the invisible workforce that cycles nutrients, suppresses diseases, and creates the living soil ecosystem that sustains healthy plants.

Unlike synthetic fertilizers that can acidify or alkalinize soil to unhealthy extremes, organic amendments work gradually to balance soil chemistry while building organic matter content. This organic matter acts as a nutrient reservoir, slowly releasing minerals as plants need them and preventing the feast-or-famine cycle common with synthetic inputs. Organic fertilizers build genuine, lasting soil wellness rather than providing temporary boosts. They improve structure, increase beneficial microorganism populations, and gradually balance chemistry while building organic reserves that slowly release minerals as needed.

7.2 Environmental Safeguarding

Chemical-free fertilizers address many of the environmental concerns created by conventional agriculture. By releasing nutrients slowly and building soil structure, they

dramatically reduce nutrient runoff into waterways, preventing algae blooms and protecting aquatic ecosystems. Their production requires far less energy than synthetic fertilizer manufacturing, reducing greenhouse gas emissions from the agricultural sector.

Perhaps most significantly, organic fertilizers support biodiversity both above and below ground. Healthy soil teeming with microbial life provides habitat for countless organisms, from bacteria and fungi to earthworms and arthropods. This biodiversity creates resilient agricultural ecosystems better able to withstand pests, diseases, and environmental stresses. Natural fertilizers dramatically reduce nutrient waterway runoff, preventing algae overgrowth and protecting aquatic systems. Production requires substantially less energy than synthetic manufacturing, reducing agricultural greenhouse emissions. They support biodiversity above and below ground, creating resilient ecosystems better withstanding stresses.

7.3 Crop Quality and Food Safety

Foods grown with organic fertilizers are free from synthetic chemical residues, addressing growing consumer concerns about pesticide and fertilizer contamination. Many studies suggest that organically grown crops may have higher levels of certain beneficial compounds, though research in this area continues to evolve. For farmers pursuing organic certification, chemical-free fertilizers are essential to meeting regulatory requirements and accessing premium markets. Even for conventional farmers, reducing synthetic inputs can lower costs over time while opening new market opportunities. Organically grown foods lack synthetic chemical residues, addressing consumer contamination concerns. Studies suggest possible higher beneficial compound levels, though research continues.

7.4 Economic Resilience

While the upfront costs of transitioning to organic methods can be significant, chemical-free fertilizers often prove economically advantageous over time. They can be produced on-farm from waste materials, reducing input costs. The improved soil health they create can lead to better water retention, reducing irrigation needs, and more resilient crops that require fewer interventions.

The global organic fertilizer market reflects this growing economic viability. From \$8.76 billion in 2024, the market is projected to grow at 6.2% annually, reaching nearly \$16 billion

by 2034. This growth is driven by increasing consumer demand for organic products and farmers' recognition that sustainable practices can be profitable.

8. Challenges and Limitations

8.1 Nutrient Availability and Crop Demands

The primary challenge with chemical-free fertilizers is their slow-release nature. While this gradual nutrient release benefits long-term soil health and sustainability, it can pose limitations for high-yield crops with intense, immediate nutrient demands. Farmers must plan ahead, applying organic amendments well before planting to allow time for decomposition and nutrient release. This timing challenge requires a different mindset from conventional farming, where synthetic fertilizers can be applied at precise moments to address specific deficiencies. Organic farming demands more sophisticated planning and a deeper understanding of crop needs and soil dynamics.

8.2 Scale and Infrastructure

Producing sufficient quantities of organic fertilizers for large-scale farming operations presents logistical challenges. Compost and vermicompost production require space, time, and labor. Sourcing enough animal manure or agricultural by-products may be difficult in regions dominated by monoculture cropping systems. Many farmers lack the infrastructure or knowledge to produce and apply organic fertilizers effectively. Extension services, training programs, and peer-to-peer learning networks are essential to help farmers make successful transitions.

8.3 Economic Barriers

The initial transition to organic methods often requires investment in new equipment, knowledge, and patience as soil ecosystems recover from years of synthetic inputs. During this transition period—which can last several years—farmers may experience yield reductions before seeing the full benefits of improved soil health. Organic fertilizers are often more expensive per unit of nutrient than synthetic alternatives, though this calculation doesn't account for the long-term value of improved soil health and reduced environmental costs. Access to credit and technical support can make the difference between successful transition and abandonment of organic practices.

8.4 Knowledge Gap

Effective use of chemical-free fertilizers requires understanding soil biology, nutrient cycling, and crop physiology—knowledge that has been underemphasized in agricultural education during the synthetic fertilizer era. Many farmers need training to interpret soil tests, recognize deficiency symptoms, and make appropriate organic amendments.

Despite the numerous benefits, several challenges hinder large-scale adoption:

- i. **Low Awareness:** Many farmers remain unaware of the long-term benefits of organic inputs.
- ii. **Initial Yield Decline:** Organic conversion often shows temporary yield reductions during the transition period.
- iii. **Limited Availability:** Inadequate supply chains for bio-fertilizers and compost.
- iv. **Certification Barriers:** Complex and costly organic certification procedures discourage small farmers.
- v. **Market Constraints:** Lack of assured markets and premium prices for organic produce.

9. The Path Forward: Implementing chemical free Fertilization

9.1 Integrated Approaches

The future of sustainable agriculture likely lies not in dogmatic adherence to purely organic methods but in integrated approaches that combine the best of traditional knowledge with modern scientific understanding. This might include:

- i. Using organic amendments to build baseline soil health while strategically applying minimal synthetic inputs when necessary
- ii. Combining different types of organic fertilizers to provide balanced nutrition
- iii. Employing precision agriculture techniques to target organic amendments where most needed
- iv. Integrating nitrogen-fixing cover crops with organic fertilization programs.

9.2 Policy and Support Systems

Government policies play crucial roles in facilitating the transition to sustainable fertilization. The European Union's Farm to Fork strategy aims to reduce fertilizer use while supporting organic farming. Similar initiatives in other regions provide subsidies for organic certification, technical assistance programs, and research funding.

Support systems might include:

- i. Financial incentives for farmers adopting organic methods

- ii. Investment in organic fertilizer production infrastructure
- iii. Research programs to improve organic fertilizer efficiency
- iv. Education and extension services focused on organic methods
- v. Premium market development for organically grown products

9.3 Innovation and Technology

Modern technology offers exciting possibilities for enhancing organic fertilization:

- i. Precision application systems that optimize organic amendment use
- ii. Improved composting techniques that accelerate decomposition
- iii. Enhanced biofertilizer strains with greater efficiency
- iv. Sensor systems that monitor soil health and nutrient status
- v. Data platforms that help farmers make informed decisions

9.4 Regional Adaptation

Successful implementation of chemical-free fertilization must account for regional differences in climate, soil type, available organic materials, and cropping systems. What works in humid tropical regions may fail in arid environments. Rice paddies require different approaches than dryland wheat cultivation. Building regional expertise through local research stations, farmer cooperatives, and knowledge-sharing networks will be essential for adapting organic methods to diverse conditions.

10. Role of IT and Digital Tools in Promoting Chemical-Free Fertilizers

- i. **Soil Health Card Scheme:** Digital soil testing data guides farmers on balanced nutrient application.
- ii. **Mobile Apps (Kisan Suvidha, mKisan):** Provide information on organic inputs and best practices.
- iii. **AgriStack Initiative:** Integrates farmer data for personalized advisory services on sustainable practices.
- iv. **e-NAM and Organic Marketplaces:** Help farmers market organic produce and fertilizers online.

11. Conclusion

The path toward sustainable agriculture through chemical-free fertilizers represents both a challenge and an opportunity. While the Green Revolution's synthetic fertilizers temporarily solved pressing food security concerns, they created environmental debts that now come due.

Soil degradation, water pollution, biodiversity loss, and climate impacts threaten agricultural productivity and ecosystem health.

Chemical-free fertilizers offer a viable alternative that works with natural systems rather than against them. By building genuine soil health, protecting environmental quality, and producing food free from synthetic residues, organic fertilization addresses multiple challenges simultaneously. The robust growth of the organic fertilizer market demonstrates both farmer recognition of these benefits and consumer demand for sustainably produced food. However, transition to organic methods requires patience, knowledge, and support. The slow-release nature of organic fertilizers demands different management strategies. Infrastructure and knowledge gaps must be addressed through policy support, education programs, and continued research. The future likely belongs not to either purely organic or purely synthetic approaches, but to integrated systems that draw on the best of both while prioritizing long-term sustainability. As climate change, population growth, and environmental degradation intensify pressure on agricultural systems, chemical-free fertilizers will play an increasingly vital role in building resilient, productive, and sustainable food systems that can nourish humanity while healing our planet.

India stands at a crossroads: continue down the path of increasing chemical inputs with diminishing returns and mounting environmental costs, or transition toward more balanced, sustainable approaches that rebuild soil health while maintaining food security. The choices made today will determine the health of India's soils, the sustainability of its agriculture, and the wellbeing of future generations. Chemical-free fertilizers are key to the future of sustainable agriculture. By balancing productivity with ecological integrity, they ensure food safety, soil fertility, and environmental sustainability. With supportive government policies, digital initiatives, and farmer participation, India can transition toward a resilient, eco-friendly agricultural system that nurtures both people and the planet.

References

1. Government of India. (2024). *Annual Report 2023–24. Ministry of Chemicals and Fertilizers, Department of Fertilizers*. Retrieved from <https://fert.nic.in>
2. Fertiliser Association of India (FAI). (2024). *Indian Fertiliser Statistics 2023–24*. New Delhi: FAI Publications.
3. Food and Agriculture Organization of the United Nations (FAO). (2023). *Soil Fertility Management and Sustainable Agriculture*. Rome: FAO.

4. Indian Council of Agricultural Research (ICAR). (2023). *Organic and Natural Farming Practices for Sustainable Agriculture*. Krishi Bhawan, New Delhi.
5. NITI Aayog. (2023). *Report on Doubling Farmers' Income: Strategies for Sustainability*. Government of India.
6. International Fertilizer Association (IFA). (2023). *Global Fertilizer Outlook 2023–2028*. Paris: IFA.
7. Indian Farmers Fertiliser Cooperative (IFFCO). (2024). *Nano Urea and Nano DAP: A Step towards Sustainable Agriculture*. Press Release and Product Details. Retrieved from <https://www.iffco.in>
8. Ministry of Agriculture & Farmers Welfare. (2024). *Soil Health Card Scheme Progress Report*. Government of India. Retrieved from <https://agricoop.nic.in>
9. Singh, R. P., & Yadav, S. K. (2022). *Impact of Chemical Fertilizers on Soil Health and Environment: A Review*. *Journal of Environmental Biology*, 43(4), 227–234.
10. Pandey, D. N., Gupta, A. K., & Anderson, D. M. (2021). *Traditional Knowledge and Climate-Resilient Agriculture in India*. *Current Science*, 120(3), 426–432.
11. Kumar, S., & Sharma, P. (2021). *Sustainable Agriculture and the Role of Organic Fertilizers*. *Agricultural Reviews*, 42(2), 110–118.
12. World Bank. (2024). *India Agriculture and Rural Development Report*. Washington, D.C.: World Bank Group.
13. United Nations Environment Programme (UNEP). (2023). *Environmental Impacts of Fertilizer Use: Global Review*. Nairobi: UNEP.
14. National Sample Survey Office (NSSO). (2023). *Situation Assessment of Agricultural Households and Input Use Patterns*. Ministry of Statistics and Programme Implementation.
15. Economic Times Bureau. (2024, June 12). *India's Fertilizer Market Valued at ₹982 Billion: Opportunities in Sustainable Alternatives*. *The Economic Times*.
16. Alam, G. (2000). A study of biopesticides and biofertilisers in Haryana, India. International Institute for Environment and Development.
17. Amutha, R. and Karunakaran, S. (2014). Isolation and mass production of biofertilizer (azotobacter and phosphobacter), *International Journal of Latest Research in Science and Technology*, ISSN (Online):2278-5299, Vol 3(1).79-81.
18. Bhattacharjee, R. and Dey, U. (2014). Biofertilizer, a way towards organic agriculture: A review. *African Journal of Microbiology Research*, Volume 8(24), 2332-2342.
19. Charyulu, D. and Biswas, S. (2010). Organic Input Production and Marketing in India – Efficiency, Issues and Policies, *Centre for Management in Agriculture (CMA) at the Indian Institute of Management, Ahmedabad (IIMA)*, Publication No- 239.